Oscillatory behaviour of solutions of nonlinear higher order neutral differential equations
نویسندگان
چکیده
منابع مشابه
Oscillatory Behaviour of Solutions of Nonlinear Higher Order Neutral Differential Equations
Necessary and sufficient conditions are obtained for oscillation of all bounded solutions of (∗) [y(t)− y(t − τ )] +Q(t)G(y(t− σ)) = 0, t > 0, where n > 3 is odd. Sufficient conditions are obtained for all solutions of (∗) to oscillate. Further, sufficient conditions are given for all solutions of the forced equation associated with (∗) to oscillate or tend to zero as t → ∞. In this case, there...
متن کاملExistence of positive solutions of higher-order nonlinear neutral equations
where n ≥ is an integer, τ > , σ ≥ , d > c ≥ , b > a ≥ , r, P ∈ C([t,∞), (,∞)), P ∈ C([t,∞)× [a,b], (,∞)), Q ∈ C([t,∞), (,∞)), Q ∈ C([t,∞)× [c,d], (,∞)), f ∈ C(R,R), f is a nondecreasing function with xf (x) > , x = . The motivation for the present work was the recent work of Culáková et al. [] in which the second-order neutral nonlinear differential equation of the form [ ...
متن کاملOn Oscillatory Nonlinear Second Order Neutral Delay Differential Equations
In this work, we investigate the oscillation criteria for second order neutral delay differential equations of the form (r(t)[y(t)+ p(t)y(δ (t))]′)′ +q(t)G(y(τ(t))) = 0 and (r(t)[[y(t)+ p(t)y(δ (t))]′]α )′ +q(t)(yβ (τ(t))) = 0, where α and β are the ratio of odd positive integers. Mathematics subject classification (2010): 34C10, 34C15.
متن کاملOscillatory Behavior of Higher-order Neutral Type Dynamic Equations
The oscillation behavior of solutions for higher-order delay dynamic equations of neutral type is investigated by making use of comparison with second-order dynamic equations. The method can be utilized to study other types of higher-order equations on time scales as well.
متن کاملOscillatory Behavior of Second Order Neutral Differential Equations
Oscillation criteria are obtained for solutions of forced and unforced second order neutral differential equations with positive and negative coefficients. These criteria generalize those of Manojlović, Shoukaku, Tanigawa and Yoshida (2006).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematica Bohemica
سال: 2004
ISSN: 0862-7959,2464-7136
DOI: 10.21136/mb.2004.134104